Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 4(11): eaat7387, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30480091

RESUMO

Emulation of human sensory and motor functions becomes a core technology in bioinspired electronics for next-generation electronic prosthetics and neurologically inspired robotics. An electronic synapse functionalized with an artificial sensory receptor and an artificial motor unit can be a fundamental element of bioinspired soft electronics. Here, we report an organic optoelectronic sensorimotor synapse that uses an organic optoelectronic synapse and a neuromuscular system based on a stretchable organic nanowire synaptic transistor (s-ONWST). The voltage pulses of a self-powered photodetector triggered by optical signals drive the s-ONWST, and resultant informative synaptic outputs are used not only for optical wireless communication of human-machine interfaces but also for light-interactive actuation of an artificial muscle actuator in the same way that a biological muscle fiber contracts. Our organic optoelectronic sensorimotor synapse suggests a promising strategy toward developing bioinspired soft electronics, neurologically inspired robotics, and electronic prostheses.


Assuntos
Nanofios/química , Junção Neuromuscular/fisiologia , Monitoração Neuromuscular/instrumentação , Polímeros/química , Sinapses/fisiologia , Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Eletrônica , Humanos , Modelos Neurológicos
2.
J Am Chem Soc ; 140(15): 5280-5289, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29595956

RESUMO

Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-1-3) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-2 was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m2), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics.


Assuntos
Reagentes de Ligações Cruzadas/síntese química , Polímeros/síntese química , Reagentes de Ligações Cruzadas/química , Eletrodos , Ligação de Hidrogênio , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Conformação Molecular , Polímeros/química
3.
Nature ; 555(7694): 83-88, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29466334

RESUMO

Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.


Assuntos
Eletrônica/instrumentação , Maleabilidade , Pele , Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Humanos , Polímeros/química , Silício/química
4.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29315845

RESUMO

Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm2 V-1 s-1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min-1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications.

5.
Science ; 355(6320): 59-64, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059762

RESUMO

Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.

6.
ACS Nano ; 5(3): 2067-74, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21323343

RESUMO

Investigation of robust and efficient pathways to build DNA-organic molecule hybrid structures is fundamentally important to realize controlled placement of single molecules for potential applications, such as single-molecule electronic devices. Herein, we report a systematic investigation of synthetic processes for preparing organic molecule-DNA building blocks and their subsequent elongation to generate precise micrometer-sized structures. Specifically, optimal cross-coupling routes were identified to enable chemical linkages between three different organic molecules, namely, polyethylene glycol (PEG), poly(p-phenylene ethynylene) (PPE), and benzenetricarboxylate, with single-stranded (ss) DNA. The resulting DNA-organic molecule hybrid building blocks were purified and characterized by both denaturing gel electrophoresis and electrospray ionization mass spectrometry (ESI-MS). The building blocks were subsequently elongated through both the DNA hybridization and ligation processes to prepare micrometer-sized double-stranded (ds) DNA-organic molecule hybrid structures. The described synthetic procedures should facilitate future syntheses of various hybrid DNA-based organic molecular structures.


Assuntos
Cristalização/métodos , DNA/química , DNA/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos Orgânicos/química , Teste de Materiais , Tamanho da Partícula
7.
J Am Chem Soc ; 130(39): 12854-5, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18763775

RESUMO

Precise electrical contact between single-molecule and electrodes is a first step to study single-molecule electronics and its application such as (bio)sensors and nanodevices. To realize a reliable electrical contact, we can use DNA as a template in the field of nanoelectronics because of its micrometer-scaled length with the thickness of nanometer-scale. In this paper, we studied the reactivity of the amide-coupling reaction to tether oligodeoxynucleotides (ODNs) to organic molecules and the elongation of the ODNs by the polymerase chain reaction (PCR) to synthesize 1.5 kbp dsDNA-organic molecule-1.5 kbp dsDNA (DOD) triblock architecture. The successful amide-coupling reactions were confirmed by electrospray ionization mass spectrometry (ESI-MS), and the triblock architectures were characterized by 1% agarose gel electrophoresis and atomic force microscope (AFM). Our result shows that this strategy is simple and makes it easy to construct DNA-organic molecule-DNA triblock architectures and potentially provides a platform to prepare and investigate single molecule electronics.


Assuntos
Amidas/química , DNA/química , Oligonucleotídeos/química , Reação em Cadeia da Polimerase/métodos , Bacteriófago lambda/química , Bacteriófago lambda/genética , DNA/síntese química , DNA Viral/química , Microeletrodos , Nanoestruturas/química , Oligonucleotídeos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...